Reduced Cardiotoxicity of Ponatinib-Loaded PLGA-PEG-PLGA Nanoparticles in Zebrafish Xenograft Model
Materials (Basel)
Authors: Al-Thani HF, Shurbaji S, Zakaria ZZ, Hasan MH, Goracinova K, Korashy HM, Yalcin HC.
Abstract
Tyrosine kinase inhibitors (TKIs) are the new generation of anti-cancer drugs with high potential against cancer cells' proliferation and growth. However, TKIs are associated with severe cardiotoxicity, limiting their clinical value. One TKI that has been developed recently but not explored much is Ponatinib. The use of nanoparticles (NPs) as a better therapeutic agent to deliver anti-cancer drugs and reduce their cardiotoxicity has been recently considered. In this study, with the aim to reduce Ponatinib cardiotoxicity, Poly(D,L-lactide-co-glycolide)-b-poly(ethyleneoxide)-b-poly(D,L-lactide-co-glycolide) (PLGA-PEG-PLGA) triblock copolymer was used to synthesize Ponatinib in loaded PLGA-PEG-PLGA NPs for chronic myeloid leukemia (CML) treatment. In addition to physicochemical NPs characterization (NPs shape, size, size distribution, surface charge, dissolution rate, drug content, and efficacy of encapsulation) the efficacy and safety of these drug-delivery systems were assessed in vivo using zebrafish. Zebrafish are a powerful animal model for investigating the cardiotoxicity associated with anti-cancer drugs such as TKIs, to determine the optimum concentration of smart NPs with the least side effects, and to generate a xenograft model of several cancer types. Therefore, the cardiotoxicity of unloaded and drug-loaded PLGA-PEG-PLGA NPs was studied using the zebrafish model by measuring the survival rate and cardiac function parameters, and therapeutic concentration for in vivo efficacy studies was optimized in an in vivo setting. Further, the efficacy of drug-loaded PLGA-PEG-PLGA NPs was tested on the zebrafish cancer xenograft model, in which human myelogenous leukemia cell line K562 was transplanted into zebrafish embryos. Our results demonstrated that the Ponatinib-loaded PLGA-PEG-PLGA NPs at a concentration of 0.001 mg/mL are non-toxic/non-cardio-toxic in the studied zebrafish xenograft model.
Odorranalectin modified PEG-PLGA/PEG-PBLG curcumin-loaded nanoparticle for intranasal administration
Drug Dev Ind Pharm.
Authors: Li X, Su J, Kamal Z, Guo P, Wu X, Lu L, Wu H, Qiu M.
Abstract
Curcumin (Cur) is a promising drug for neurological diseases. Nevertheless, the application of Cur has been limited due to its difficulty in penetrating blood-brain barrier (BBB). Intranasal drug delivery, a noninvasive alternative delivery of Cur, can effectively help Cur cross BBB and inert into central nervous system directly. Odorranalectin (OL) which is the smallest lectin can prolong the residence time of Cur in the nasal mucosa and promote cellular uptake. In this work, a nasal delivery system incorporating OL modified Cur-loaded nanoparticles (Cur-OL-NPs) was developed and expected to bypass BBB and promote the absorption of Cur. We conjugated OL to polyethylene glycol-poly (lactic-co-glycolic acid) (PEG-PLGA), and combined polyethylene glycol-poly (γ-benzyl-L-glutamate) (PEG-PBLG) and OL-PEG-PLGA to prepare nanoparticles to improve the stability, bioavailability and targeting of Cur. Compared with unmodified NPs, increased efficiency of Cur-OL-NPs cellular uptake by Calu-3 cells had been obtained with no severe toxicity. Furthermore, in vivo pharmacokinetic studies also showed that Cur-OL-NPs had higher relative bioavailability. Thus, it is concluded that the results indicated that OL-NPs as carriers of Cur had a promising future in nasal drug delivery system.
Thermosensitive vancomycin@PLGA-PEG-PLGA/HA hydrogel as an all-in-one treatment for osteomyelitis
Int J Pharm.
Authors: Yuan B, Zhang Y, Wang Q, Ren G, Wang Y, Zhou S, Wang Q, Peng C, Cheng X.
Abstract
Osteomyelitis is a difficult-to-treat infectious disease. Treatment, which includes controlling the infection and removing necrotic tissues, is challenging. Considering the side effects and drug resistance of systemic antibiotics, local drug delivery systems are being explored. Antibiotic-loaded bone cement is the main treatment strategy; however, it has several disadvantages. Thus, based on its thermosensitive gelation properties, poly(D, L-lactide-co-glycolide)-poly(ethylene glycol)-poly(D, L-lactide-co-glycolide) (PLGA-PEG-PLGA) copolymer was used as a sustained-release drug carrier by calibrating its synthesis parameters. We prepared and characterized vancomycin@PLGA-PEG-PLGA/hydroxyapatite (HA) thermosensitive hydrogel with an LA/GA ratio of 15:1. The rheological characteristics, sol-gel phase-transition properties, and critical micelle concentration value of the PLGA-PEG-PLGA/HA complex confirmed that it undergoes a temperature-sensitive sol-gel phase transition. Furthermore, the HA in the composite increased the storage modulus of the system. FT-IR, XRD, and TEM findings showed that HA could be dispersed uniformly in the PLGA-PEG-PLGA polymer. Moreover, HA neutralized acidity during polymer degradation, improving in vitro cytocompatibility. In vitro and in vivo antibacterial experiments showed that the composite sustained-release system exhibited good bone repair characteristics owing to its efficacy in infection treatment. Therefore, vancomycin@PLGA-PEG-PLGA/HA allows sustained release of antibiotics and promotes bone tissue repair, showing potential for wide clinical applicability.